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1 Introduction 
Inertia is a physical property of rotating machines and it denotes the resistance of the rotor 

speed to torque variations. Rotating machines can be found in conventional generating units 

such as thermal and hydro generating units using synchronous generators. The inertia is 

technology dependent and takes typical values in per unit. Induction-motor driven loads also 

involve rotating machines. Although wind generators make use of rotating machines to 

converter kinetic into electrical energy, these are coupled to the grid by a stage of electronic 

power converters, either through the stator or the rotor. The control of these converters 

controls the rotating speed according to the maximum power point (MPP), decoupling rotor 

speed from grid-side disturbances (non-synchronous generators). Nonetheless, wind generators 

could provide an inertial response through appropriate controls. A similar remark applies to 

variable speed electric drives (VFD) that are connected to the grid by a stage of electronic power 

converters.  

System inertia refers to total inertia of a system. It is, at least, equal to the sum of the inertia 

values of the connected rotating machines, dominated in the past by the inertias of large 

conventional generating units. System inertia is related to the hypothesis of a uniform frequency 

within a system by neglecting inter-machine oscillations, which holds true in steady state but 

not during transients. This system frequency is given by the frequency of the center of inertia 

(COI). In this regard, system inertia opposes frequency changes when active power balances 

occur.1 It affects to a large extent the system-wide average rate-of-change of frequency (ROCOF) 

at the time of occurrence of the disturbance, but also the frequency nadir and frequency 

recovery 2. By assuming, for instance, invariant primary frequency control characteristics, the 

reduction of system inertia leads to steeper ROCOF and lower frequency nadir for a given 

disturbance. Note that the increasing penetration of non-synchronous generation does not only 

affect system inertia but also primary frequency control characteristic if the non-synchronous 

generation does not contribute to inertia emulation and primary frequency control. Currently, 

conventional generating units still provide most of the inertia and primary frequency control, 

but they are gradually being replaced by non-synchronous generation in the generation 

dispatch. The reduction of system inertia could lead to unnecessary underfrequency load 

shedding (UFLS), activate ROCOF-based anti-islanding protection schemes of distributed 

generation, etc. In this regard, (Mehigan et al. 2020) has studied the impact of system inertia 

constraints on operation planning of five synchronous areas of Continental Europe. Imposing 

smaller largest admissible ROCOF values tends to increase costs and non-synchronous 

generation curtailment, where the effect is stronger in smaller weakly interconnected systems 

than in larger ones. Inertia emulation could however further increase non-synchronous 

generation penetration in already low-inertia systems. Furthermore, existing synchronous 

generators transformed into synchronous compensators could provide additional support.  

                                                           
1 In per unit, torque and power variations are approximately equal as long as speed variations are small. 
2 Frequency nadir refers to the minimum frequency value after an active power unbalance. Frequency 
recovery denotes here the process during which frequency increases and regains its nominal value after 
have reached its nadir. Physical inertia opposes frequency recovery in the same way it opposes frequency 
drop.  
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(Nikolic and Negnevitsky 2019) presents field tests involving synchronous compensators in King 

Island, Australia.  

The interpretation of the system inertia as the system frequency’s opposition to change when 

there are active power unbalances can be further extended to include the contribution to 

inertial response of non-synchronous generation and even load. The term effective inertia has 

been coined to include virtual or emulated inertia and voltage- and frequency-dependency of 

loads. The effective inertia actually relates active power variations with ROCOF. Indeed, non-

synchronous generation could hold back a certain power margin by operating at a sub-optimal 

power point (deloaded operation), that could be activated by appropriate controls. The exact 

activation depends on whether the grid-side electronic power converter operates in grid-

following or grid-forming mode. In addition, wind generators can also extract kinetic energy 

stored in the inertia of their rotors. Under this control, the wind generator operates at its MPP, 

but when needed, the active power set point is increased temporarily which slows down the 

rotor speed of the wind generator, releasing stored energy. Finally, an active power disturbance 

is usually accompanied by a voltage variation, that nearly immediately affects power 

consumption of loads (e.g., torque of induction motors depends on the square of the stator 

voltage). 

Not only the total amount of inertia is important, but also its distribution within a system. 

System inertia is not uniformly distributed among the buses of a system. Different generation 

technologies at different locations have different inertia values and they inherently cause an 

uneven inertia distribution. In case of non-synchronous generation providing inertial response 

(e.g., wind generators through deloaded operation or temporary overspeed), the inertia further 

depends on the availability of the primary resource. An uneven distribution of the system inertia 

can lead to local problems (contrary to system-wide problems). The term local inertia 

phenomenon refers to a power system with an uneven distribution of inertia across the entire 

system (Osbouei et al. 2019). The distribution of the inertia affects local ROCOF, inter-area 

oscillations and critical clearing times, but frequency nadir is affected by the system inertia level 

rather than by the distribution of the inertia. In this regard, (Osbouei et al. 2019) studies the 

impact of local inertia phenomenon on small-signal stability (inter-area oscillations), transient 

stability (critical clearing times) and frequency stability (local ROCOF, nadir) under different 

inertia distribution scenarios between Scotland, and Wales and England. Finally, (Mehigan et al. 

2020) concludes that although a synchronous area as a whole might have sufficient inertia, 

amounts at country-level might be insufficient, being a risk in case of system splitting events.  

Estimating system inertia is basically a model-identification problem. Non-parametric and 

parametric model-identification approaches exist. Parametric identification approaches initially 

start from a given mathematical structure of the model. Mathematical models can be classified 

into white-box, grey-box, and black-box model. White-box models mathematically describe the 

physical relations of an element and its associated controls, whereas black-box models only 

describe the input-output relations without taking into account the internal physical and 

control-based relations. Grey-box models combine white-box and black-box models, i.e., 

approximate mathematical formulations (usually of reduced-order) are combined with generic 

parametrization of input-output relations. Most of the reviewed methods of inertia estimation 

make use of a parametric model identification. 
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This report reviews the technical literature with respect to inertia estimation methods. Section 

2 reviews concepts and provides definitions on physical inertia, system inertia, and emulated 

inertia. Section 3 provides an overview and insight of the transient response of the system in 

terms of generator speeds to active power unbalances. Most methods on inertia estimation 

make use of the different phases during the power system transient. The review of the inertia 

estimation methods is presented in section 4, whereas section 5 discusses the methods and their 

application to distribution system. Indeed, the amount of distributed generation and noticeably 

non-synchronous distributed generation connected to distribution systems is increasing. Their 

contribution to system inertia is thus increasing as well. Although inertia reduction is mostly 

considered a system-wide issue and inertial response therefore belongs to the ancillary services 

managed by the system operator (Kryonidis et al. 2021), distribution system operators need 

tools, among others, for monitoring of inertial response and estimation of inertia within their 

systems.  

2 Concepts and definitions 

2.1 Physical inertia 
Inertia is a physical property of rotating machines. Inertia quantifies the resistance of the rotor 

speed to change when torque variations occur. In per unit, torque and power variations are 

approximately equal. The rotor dynamics of a generating unit are driven by Newton’s second 

law for rotation.  

  ,

g

g mg eg Dg g B g

d
J T T K

dt


      

 
(1) 

where Jg is the moment of inertia, Ωg the rotor speed, Tmg and Teq the mechanical and electrical 
torque, respectively, and Kdg the damping coefficient. If the equation is written in per unit: 

  
2 2

, ,

, ,

1
g B g g Dg B g
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B g B g

J d K
t t

M dt M




 
     

 
(2) 

where ΩB,g and MB,g are the rated speed and power. Since power is related to torque through 
speed p = t‧ ωg, the rotor dynamics can be written as follows: 
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D

M M


 
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(4) 

Dg is damping coefficient in per unit, which in this simplified expression represents the impact 

of damper windings, power system stabilizers, etc. Note that whereas the moment of inertia Jg 

is constant, Hg is only approximately constant (when ωg is close to unity). Under small variations, 

the rotor dynamics can be written as follows: 
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 2
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H p p D

dt





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(5) 

or in the complex domain by applying the Laplace transform: 
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(6) 

By defining Δpg = Δpmg - Δpeg, the derivative of the generator speed is: 

    
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(7) 

The initial derivative of the generator speed can be computed from the initial value theorem 
when applying a step response of size Δpd and computing the derivative of the speed variation 
or, being equivalent, an impulse of Δpd and computing speed variation: 
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(8) 

The relation between initial generator speed variation and an impulse is used in (Tuttelberg et 

al. 2018) for inertia estimation. 

2.2 System inertia 
In the past, system inertia was dominated by the sum of the inertia values of the large generating 

units. The total inertia of synchronous generators is computed as the sum of individual generator 

inertia values expressed on a common system rating, SB,g: 

 
,g B g

sg

g SG Bsg

H M
H

S


 

 
(9) 

where the system rating is defined as the sum of the ratings of the synchronous generators: 

 ,Bsg B g

g SG

S M


   (10) 

For low non-synchronous penetration levels, a linear relationship between system inertia and 

system demand has been assumed (Ashton et al. 2015). The more demand, the more 

synchronous generation units online; however, varying generation mixes involving different 

generation technologies could lead to different system inertias since individual inertia values 

depend on the generation technology. For high non-synchronous penetration levels, a (negative) 

correlation between the non-synchronous penetration level and the system inertia can be 

assumed (Du and Matevosyan 2018) (Allella et al. 2020). In this case, system inertia is computed 

by considering additionally non-synchronous generation capacity as follows: 
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,
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(11) 

with the total rating of the non-synchronous generation being: 

 ,Bnsg B g

g nSG

S M


   (12) 

In order to consider further elements that provide direct (e.g., inertia emulation) or indirect 

(e.g., voltage-dependency of loads) inertial response, (Tuttelberg et al. 2018) defines the 

effective inertia. Indeed, (KUIVANIEMI M. et al. 2015) has shown that voltage-dependent load 

variations are dominant at the beginning of the disturbance, and thus affect inertia estimation. 

Effective inertia defines the relationship between a change in the power balance of the system 

or area and the rate of change of frequency of that area. In (Wilson et al. 2019), a quasi linear 

relationship between effective inertia, demand and total synchronous inertia of an area in UK 

has been found. In this line, (Phurailatpam et al. 2021) differentiates between synchronous and 

non-synchronous inertia. To include for instance non-synchronous generation that provides 

virtual inertia, the system inertia can be computed as: 
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(13) 

 

2.3 Center of inertia 
From the system point of view, a very useful quantity is the frequency of the center of inertia 

(COI), ωCOI: 
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(14) 

 

The COI frequency is the inertia-weighted frequency (speed) of the generation units and its first 

derivative together with the knowledge of the system inertia makes it possible to estimate the 

initial active power unbalance. The COI frequency represents the system frequency by 

neglecting inter-machine oscillations. Indeed, generator and bus frequencies can be seen as 

variations around the COI frequency. If individual rotor dynamics are summed up and if we 

assume a uniform frequency ω: 
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(15) 
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 (Azizi et al. 2020) proposes a method to estimate the COI frequency by local measurements 

only. Inflection points of the local frequency (i.e., the instant when second time derivative of the 

frequency is cero) coincide with the COI frequency and the interpolation of the inflection points 

provides an estimate of the COI frequency. Filtering is needed.  

2.4 Emulated or virtual inertia 
Non-synchronous generation is able to provide inertia or rather an inertial response if 

appropriate controls are available. The control depends on the technology behind the non-

synchronous generation as well as on the operation mode of the inverter. Wind generation 

involving rotating machines can provide inertial response by extracting kinetic energy from the 

rotor’s inertia or by holding back power and activate this reserve if needed. Since PV generation 

or battery energy storage systems (BESSs) do not involve rotating masses, they can only provide 

inertial response by holding back power before activating it.  

The grid-side inverters can be operated in grid-following or grid-forming mode. The control of 

grid-following inverters ensures the injection of given active and reactive powers by 

synchronizing the inverter and its controls with the grid, requiring the presence of a sufficiently 

strong grid and a PLL. Grid-forming inverters, by contrast can adjust, the imposed voltage and 

frequency as a function of the measured active and reactive power, for instance through droop 

controls, virtual synchronous machine implementation, etc. Grid-forming inverters are typically 

used for BESS, whereas grid-following inverters are used for PV generation. 

Typically, grid-following inverters modify the active power set point by adding a frequency-

variation-dependent signal, Δpgfoll,ref: 

 
1 0

,

1 0

(s)gfoll ref b

b s b
p

a s a


 
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   
(16) 

 

where bi, ai are the parameters of the control transfer function, and Δωb is the bus frequency 

variation. Grid forming inverters can implement a series of power controllers. To some extent, 

these controllers are equivalent. To show the equivalence of droop control and virtual 

synchronous machine, let’s formulate the droop control first: 

 , 0 0
1

eg

g ref p

fp

p
m p

s T
 

 
    

     

(17) 

 

where mp is the droop constant, Tfp a time constant, p0 the initial power set point, ω0 the 

reference frequency, and peg is the converter’s electrical power. By assuming constant power 

and frequency set points, p0 and ω0, this equation can be re-written as follows: 

 
 , 0 , 0

2

1fp

g ref eg g ref

p p

H D

T
s p p

m m
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
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(18) 

Indeed, the dynamic equation relating the frequency generated by the grid-forming inverter and 

the power balance resembles the rotor dynamics of a synchronous generator.  
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3 Response phases to active power unbalances 
Inertia estimation methods exploit different physical phenomena occurring just after an active 

power unbalance. The response of a power system to an active power unbalance during the first 

few seconds can be separated into several phases3: 

 Rotor oscillations, depending on the electrical distance to the disturbance 

 Rotor speed acceleration, depending on the disturbance and the inertia 

 Primary frequency control, depending on the time constants (technology) and droops 

Figure 1 illustrates the responses of the rotor speeds of two generators to an active power 

unbalance. Indeed, oscillations between rotor speeds can be observed. Whereas small 

disturbances basically lead to rotor oscillations, large disturbances lead to both rotor oscillations 

superimposing rotor speed acceleration. After some time, oscillations damp out and frequency 

is uniform.  

 

Figure 1: Illustration of the response of rotor speeds to an active power unbalance. 

In general, the estimation methods make use of the first two phases to derive system inertia. 

Inertia affects the oscillation frequency of the electromechanical mode, i.e., the relative rotor 

speed oscillations. Inertia also affects the rotor speed acceleration. Usually, rotor speed 

acceleration has been assumed to be uniform, which is true in steady state but not during the 

transient, since persistence of oscillations depends on their damping.  

                                                           
3 (Vorobev et al., 2019) presents approach to studying the long-term frequency distribution in power 

systems. A dynamic model with stochastic perturbations is used to derive an equation for the frequency 

deviations probability density function (PDF). System inertia has little effect on the frequency PDF, but 

aggregate system droop and deadband width have a major influence on the average frequency deviations.  
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3.1 Two-generator system 
For the first two phases, a simple system consisting of two generators feeding a constant power 

load can be considered, illustrating the dominant factors.  

3.1.1 Power sharing according to the electrical distance to the disturbance 
Figure 2 shows the single line diagram of a two-generator system feeding an active power load 

and its equivalent circuit.  

 

Figure 2: Single line diagram of a two-generator system feeding a load and its equivalent circuit. 

The power balance in per unit at the load can be written as follows: 
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 
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(19) 

 

where pL, pe1, and pe2, are the load power and generated powers, respectively, e1, e2, and v3 are 

the voltage magnitudes, δ1, δ2, and θ3 are internal and bus voltage angles, and x1 and x2 are the 

equivalent reactances. By assuming constant voltages, the variation of the power balance 

around an operation point results in: 
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(20) 

 

This is similar to the DC power flow formulation. The variation of the angle of the load can be 

expressed in terms of the variations of the internal angles of the generators. 
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If initial angle differences are small due to a change in the load and voltages magnitudes are 

constant and about equal (e10 ≈ e20 ≈ v30 ≈ 1 pu), the power variation of generator 1 can be 

computed as follows: 

 
1 2 2

1

1 2 1 2 1 2

L

e

x p
p

x x x x x x

   
   

    
(22) 

In other words, if x1 ≈ x2, and since internal angles cannot change suddenly, then generator g1 
picks up half of the load variation. If x1 << x2, then generator g1 picks up most of the load 
variation. Congruently, the electrical distance to the perturbation initially determines the power 
picked up and larger speed oscillations could be expected at the generating unit with larger load 
variation pick up.  

3.1.2 Rotor speed oscillations 
The oscillations can be analyzed by means of the dynamic equations of the rotor. Instead of 

analyzing the individual speeds, the difference between speeds are studied, which describes the 

oscillations between them. In particular, the imaginary part of the complex eigenvalue of the 

dynamic system relates to the oscillation frequency. The dynamic equations are: 
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(23) 

For small variations, 
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By knowing that 
1 2L e ep p p     and defining and imposing that KHD = H2‧D1 = H1‧D2, then the 

speed (Δω = Δω1 – Δω2) and angle (Δδ = Δδ1 – Δδ2) differences can be written as: 
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(25) 

and by using the expression for voltage angle θ3: 
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(26) 

or written in matrix form by assuming constant mechanical power and considering load variation 
as the input variable: 
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(27) 

The oscillation frequency is related to the imaginary part of the complex eigenvalues: 
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(29) 

 

The eigenvalues indicate a damped oscillatory response. Figure 3 illustrates the damped 

oscillatory response of the speed difference between generator 1 and generator 2. Since rotor 

speeds in steady state are equal, the speed difference in steady state tends towards zero.  

 

Figure 3: Illustration of a damped oscillatory response of the speed difference. 

In the absence of damping sources such as damper windings, power system stabilizer, etc. (i.e., 

KHD = 0), the oscillation frequency is equal to the natural frequency ωn and depends only on the 
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inertia relation and on the initial power point relation (or approximately, on the respective 

electrical distances). The instant, t, where the oscillation amplitude falls below a certain 

threshold, A, can be computed as: 

 
 ln

n

A
t

 

   

(30) 

 

For instance, with Hi = 4, Di = 20, Pei0 = 5, and A = 0.1, t = 1.84 s. In other words, and depending 

on the damping coefficient, oscillations are well damped out between 1.5 to 3.5 s.  

3.1.3 Rotor speed acceleration 
Due to the power unbalance caused by the load variation, the rotor starts slowing down. Rotor 

oscillations analyzed previously are superposed to this deceleration. If the oscillations are 

sufficiently well damped after the first few instants, one can assume that frequency and its 

ROCOF vary about uniformly throughout the system. 

 1 2d d
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(31) 

 

By neglecting the damping coefficient D, the following relation can be found: 
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(32) 

 

The inertia of each generator can thus be estimated if the power variations at each generator 

terminal can be measured and by assuming a uniform ROCOF. Indeed, for a given (known) 

system power unbalance, the system inertia can be estimated as: 
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(33) 

 

3.2 Large systems 
For large systems, network equations including the transient reactance of generators can be 

written as follows when making use of the DC power flow formulation: 
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(34) 

 

Since initially the internal angles cannot vary, load variations translate into generator power 

variations according to electrical distance contained in matrices A2 and A4. Apart from this 

conclusion, equation (34) shows that, under constant load (ΔpL = 0, being true for buses without 
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connected loads), load and internal voltage angles are related, i.e., load frequencies are imposed 

by generator speeds4. 

The dynamic equations become: 
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(35) 

 

where L is a matrix describing the network relation, and H and D are diagonal matrices 

containing the inertia values and damping coefficients, respectively. Modal analysis can be 

applied to evaluate eigenvalues, eigenvectors and participation factors, numerically. If D is 

neglected: 
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Along this line, (Pagnier and Jacquod 2019) further represents the Laplacian in terms of its 

eigenvalue matrix and the right eigenvector matrix: 

 1

L

  L V Λ V  (37) 

 

and the eigenvalue of the system (of Asys) can be related to the eigenvalues of the network 

Laplacian. If all inertia values were the same and equal to H (H = I/2/H, where I is the identity 

matrix), the system matrix Asys becomes: 
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(38) 

 

Indeed network Laplacian eigenvalues are modified by a factor inversely proportional to the 

inertia. In other words, the network plays a significant role in the oscillations. When analyzing 

the impact of inertia distribution on the disturbance propagation of a simplified model of the 

continental European system (by considering lossless network, classical generator model, 

frequency-dependent loads), (Pagnier and Jacquod 2019) shows that disturbance propagation 

is not only governed by the inertia distribution, but also by its location, i.e., the electrical 

distance, which is taken into account by contemplating the eigenvalues of the network 

                                                           
4 This has been shown in a more systematic way by the frequency divider in (Federico Milano & Alvaro 
Ortega Manjavacas, 2020a). 
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Laplacian. In particular, the slowest mode, called Fiedler mode, has a large impact, and adding 

inertial response in Fiedler areas (areas participating in the Fiedler mode) is beneficial.  

4 Review 

4.1 Overview 
Inertia estimation is a parameter estimation problem. In power systems, static and dynamic 

state estimation are differentiated. (Zhao et al. 2021) provides a comprehensive clarification of 

the roles of the dynamic state estimation (DSE) from the power system modeling, monitoring, 

and operation perspectives. Measurement configurations, model requirements, software 

support and potential applications are discussed. Among others, DSE applications include 

generator inertia and reactance estimation, estimation of frequency and ROCOF of the COI, 

frequency stability assessment, etc. (Kryonidis et al. 2021) gives a brief review on inertia 

estimation. Further, modal identification and equivalent modeling of distribution networks is 

reviewed. Indeed, inertia estimation and its distribution in distribution systems can also be 

understood within equivalent modeling and identification of distribution systems. Nonetheless, 

equivalent models are usually developed from the TSO perspective at the point of connection 

(POC), yielding to single inertia value offered by the distribution system but without providing a 

distribution of the inertia. (Heylen, Teng, and Strbac 2021) discusses challenges and 

opportunities of inertia estimation and forecasting in low-inertia power system. Operation 

constraints and measures to tackle reduced inertia levels have been reviewed, with a particular 

focus on UK and the Nordic systems.  

4.1.1 Trigger and execution time 
(Cai et al. 2019) differentiates between static and dynamic approaches. In static calculations, 

system inertia equals the weighted average of the inertia values of the generators at the same 

capacity. To overcome the shortcomings of static approaches (lack of data of distributed 

generation (DG), insensitivity to inertia changes) estimation methods that use recorded system 

responses have been developed. Such dynamic approaches can be further classified in the way 

measurements are obtained: event-based estimation and continuous estimation. Measurement 

data used can be usually divided into three types (Guo, Norris, and Bialek 2014):  

 ringdown signal (disturbances),  

 ambient signal (continuous small disturbances),  

 and probing (injection) signal. 

Ringdown signals normally occur after large system disturbances, while ambient signals are 

present when the system is subject to continuous small disturbances such as load variations. 

Probing signals are procured testing pseudo-random noise is injected intentionally.  

Measurements can be either extracted from DFR or PMUs. Whereas DFR can capture 

electromagnetic transients, PMUs can measure electromechanical transients (Fan, L., Miao, and 

Wehbe 2013). The available data from DFR are stator phase currents and voltages at the 

terminals of synchronous machines, and the field voltage and current. Available data from PMUs 

consists of voltages, voltage phase angles, and real and reactive power. 
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(Heylen, Teng, and Strbac 2021) further divides inertia estimation methods into offline, online 

and forecast methods according to the execution instant and estimation horizon. Forecast 

methods, as classified by (Heylen, Teng, and Strbac 2021), are however mostly online methods, 

estimating the inertia with different time resolutions. Indeed, some online methods estimate 

the currently available inertia (real time), whereas others estimate the inertia with lower time 

resolution (e.g., for the current hour) but also could estimate inertia larger time horizons (e.g., 

several hours or the next day).  

4.1.2 Underlying physical concept and evaluation method 
Estimation approaches can also be differentiated according to the evaluation method and the 

underlying physical concept: 

 Electromechanical modes 

 Frequency (speed) acceleration (swing equation) 

Estimation approaches based on oscillation modes employ different mode identification 

methods, which also depend on the way the measurements have been obtained (Guo, Norris, 

and Bialek 2014). Prony analysis uses ringdown signals following a large disturbance, whereas 

Wiener-Hopf equations, recursive methods, or empirical mode decomposition can be used for 

ambient signals. Estimation methods based on the swing equation use different degrees of 

modeling details, from neglecting the equivalent damping term, over including other frequency 

and voltage-dependent terms, to explicitly contemplating the lost inertia after a generation 

outage. The computation of the inertia making use of the swing equation differently evaluates 

the angle, frequency and power derivatives by means of polynomial approximations, finite 

differences, sliding windows, moving average windows, etc. (Heylen, Teng, and Strbac 2021) 

differentiated the methods according to the domain of the underlying models: time-series 

models, models in the Laplace domain, and models in the modal domain. Indeed, many methods 

starting from the swing equation use time-series and Laplace-domain models.  

4.2 Classification 
This section reviews and classifies the state of the art of inertia estimation according to the 

scope, the methods, and whether the focus lies on the amount of inertia or its distribution. 

Although inertia estimation is a model identification problem and the estimation of the inertia 

as such is a result of model identification, particular attention is paid on literature explicitly 

tackling inertia estimation.  

4.2.1 Scope 
Inertia estimation approaches can be differentiated according to their scope. The scope of the 

methods are: system-wide, area-wide, element-wise. 

4.2.1.1 System-wide 

Most of the approaches aim at estimating system inertia. In many cases, they use a frequency 

measurement at a single location by assuming that the measurement location coincides with 

the COI tacitly (see (Inoue et al. 1997), (Wall and Terzija 2014), etc.) and by estimating or 

assuming the active power unbalance. Other approaches approximate the COI frequency by 

using several frequency measurements and computing the average (Schiffer, Aristidou, and 
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Ortega 2019), an inertia weighted average (Zografos, Ghandhari, and Eriksson 2018a), 

(Azizipanah-Abarghooee et al. 2019), etc. 

Modal information can also be used to estimate system inertia. If the n-1 independent 

electromechanical modes of a n-machine power system were measurable, only n-1 inertia 

values could be estimated (Guo, Norris, and Bialek 2014). System inertia is then computed by 

summing up individual inertia values. For larger (multi-area) systems (Cai et al. 2019) builds a 

two-area equivalent, where the challenges reside in identifying the equivalent two-area system 

and reducing the initial system to the two-area one. (Yang et al. 2020) also proposes a method 

for identifying and building a two-generator equivalent of an interconnected power system for 

a particular mode.  

(Best, Brogan, and Morrow 2021) estimates the system inertia by making use of known 

perturbations, caused by the flow changes on a HVDC interconnector. Similarly, (S. Shah and V. 

Gevorgian 2019) proposes a system inertia estimation making use of a frequency response 

function between a known active power injection and the measured frequency at the point of 

injection. 

(A. Schmitt and B. Lee 2017) describes the use of an artificial neural network (ANN) to estimate 

system, area and bus inertia under normal operation conditions. Whereas area and system 

inertia could be predicted relatively well, bus inertia prediction is far less accurate since the 

relation between modal information and individual bus inertias is less clear. A similar approach 

has been persued by (E. S. N. R. Paidi et al. 2020) . 

(X. Cao et al. 2016) presents a switching Markow Gaussian model (SMGM) to estimate system 

inertia online during normal operation conditions. (Allella et al. 2020) proposes a method which 

uses a stochastic process to estimate the system inertia. 

4.2.1.2 Area-wide and regional 

The estimation of area-wide and regional inertia has also been treated in the literature. System 

inertia can then be computed by summing up the inertia of the areas. (Tuttelberg et al. 2018) 

presents a method where system inertia is obtained from the set of individual area inertia 

values, with the boundaries of each area previously defined. Similarly, (Ashton et al. 2015) 

compute the total system inertia by summing up regional inertia values of large synchronous 

generators, assumed being known. (Wilson et al. 2019) also assumes that the power system can 

be considered as multiple centers of inertia, coupled through the network. (G. Chavan et al. 

2017) defines the area equivalents by using historical coherency and the pilot bus of each 

equivalent area needs to be equipped with a PMU for inertia estimation. (Cai et al. 2019) obtains 

its two-area equivalent by an appropriate network reduction including coherency.  

(Guo, Norris, and Bialek 2014) estimates inertia of synchronous generators by employing modal 

information extracted from online WAMS measurements. (Panda, Mohapatra, and Srivastava 

2020) describes another online method to estimate element and area inertia to a known or 

detected disturbance. Modal information is extracted by using ESPRIT. Similarly, (Yang et al. 

2021) presents a disturbance-based estimation of area effective inertia by extracting inter-area 

modal information from PMU measurements by means of DMD. 
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Other area or rather regional inertia estimation methods have also been proposed. (Fan, Miao, 

and Wehbe 2013) presents a method based on PMU measurements, estimating the inertia 

downstream of the measurement location. Similarly, (Lugnani et al. 2020) describes a 

disturbance-based inertia estimation approach of a single or a group of generators. Inertia of 

generators downstream of the location of the PMU measurement can be identified. (Liu, Chen, 

and Milano 2021) makes use of the rate of change of power (ROCOP) to estimate the inertia of 

a synchronous or non-synchronous or a group of generators. 

(Zeng, Zhang, Zhou et al. 2020) estimates bus inertia from ambient data. (Zeng, Zhang, Chen et 

al. 2020) extends the approach proposed in (Zeng et al. 2020). Electrical power and frequency 

at each generator bus or at area or system-level need to be measured by PMUs. 

4.2.1.3 Element-wise and local 

Significant effort has been devoted to synchronous machine model validation and parameter 

calibration, involving among others the inertia parameter. Parameter calibration of synchronous 

machines can be traditionally implemented using staged tests, conventional online tests, or 

PMU-based tests (Z. Huang et al. 2013).  

Method Point in time Online/offline Data 

Staged test Commission or 
scheduled 

Offline Standstill 
frequency 
response 

Conventional 
online test 

Scheduled, set 
point variations, 
or disturbances 

Online Large/small 
disturbance 
response 

PMU-based test Ambient or 
Disturbance 

Online Large/small 
disturbance 
response 

Table 1: Parameter identification methods of synchronous machines (Z. Huang et al. 2013). 

(Z. Huang et al. 2013) proposes an online parameter estimation method of synchronous machine 

by using enhanced Kalman filter (EKF) and PMU measurements, that are played-back5 to a 

suitable 4th-order model to estimate the inertia, the exciter and the PSS gain. These parameters 

have been selected by correlating the frequency spectrum of the measured active and reactive 

powers with the spectrum of the trajectory sensitivities of all parameters. (Fan, Lingling and 

Wehbe 2013) uses a similar approach but by employing an iterative EKF, which improves 

convergence of the Kalman filter process but at a higher computation cost. Unscented Kalman 

filter (UKF) and a modified Kalman filter have been used to estimated, among others, the inertia 

value of individual generators in (Ariff, Pal, and Singh 2015) and (Zhao, Tang, and Terzija 2019), 

respectively.  

(Wang, B. et al. 2020) describes an online inertia estimation algorithm that makes use of ambient 

data to extract modal information on the electromechanical oscillations. With respect to inertia 

                                                           
5 Two play-back methods have been reported. Method A applies measure voltage and frequency signal to 
the model and the resulting active and reactive powers are compared with the measured ones. Method 
B applies active and reactive powers to the model and compares the measured and obtained voltage and 
frequency (Fan, Lingling & Wehbe, 2013). 



A review of methods for the estimation of inertia and its distribution 
 

 

 

 

19  October 2021 

estimation, (Sun, M. et al. 2019) presents an online inertia estimation algorithm making use of 

PMU measurements obtained at the terminals of every generator, measuring power and 

frequency to compute ROCOF and inertia. (Liu, Chen, and Milano 2021) makes use of the rate of 

change of power (ROCOP) to estimate the inertia of a synchronous generators. (Tavakoli et al. 

2012) proposes a grey-box approaches to estimate generator inertia by making use of a standard 

dynamic model of the governor and including the inertial response (swing equation) and by 

minimizing the difference of the measured and simulated energy responses, weighted 

exponentially in time to compensate for the governor response. The impact of sampling rate, 

time shift and moving average filter window length have been studied, and results show that 

the window length of the filter has most impact and that sampling frequency should be at least 

8 Hz. 

Inertial response of RES has also been analyzed and identified. Indeed, (He, Yuan, and Hu 2017) 

shows that the inertial response of a DFIG depends on the PLL and the active power control loop. 

A synthetic internal voltage, similar to the one of the classical synchronous machine model, is 

derived, and the dynamics of its associated angle are affected by the PLL and the active power 

control loop. As a result, the inertia can be changed by tuning the parameters of the PLL. The 

transfer function indicates that the inertia will decrease during a dynamic process. A fast PLL 

results in a fast angle movement, and thus an effective low inertia, whereas a slow PLL results 

in an effective high inertia. In this regard, the absence of the PLL (and controls) would result in 

trespassing the natural inertia of the DFIG. (Beltran et al. 2018) estimate the emulated inertia of 

wind farms. The method assumes that the inertia emulation resembles a virtual swing equation. 

The swing equation is expressed in terms of the bus voltage angle obtained by PMUs and 

discretized through a 4th-order central finite-difference scheme. The estimation requires 

detecting the beginning of the disturbance, the peak value of the first angular oscillations, and 

knowing the active power produced by the wind farm. (Lu et al. 2020) considers and builds a 

mixed copula-based conditional probability distribution model of the wind speed, considering 

wake effect, wind shear conditions, and time delay of wind speed. The available inertia is 

evaluated in terms of "available kinetic energy" and "available additional active power", which 

both depend on the condition probability distribution of the wind speed. This provides inertia 

bounds with a certain degree of confidence. 

4.2.2 Inertia estimation methods 

4.2.2.1 Dispatch status 

Under the assumption that the commitment of all synchronous generators as well as their inertia 

constant is known, the system inertia can be estimated. Indeed, (W. Winter et al. 2015) 

mentions that the position of circuit breakers connecting synchronous generators to the power 

system has been investigated as a method for helping to determine the online inertia. Such an 

approach is currently used to monitor inertia in the Nordic countries (ENTSO-e 2018). 

(Du and Matevosyan 2018) proposes monitoring ERCOT’s system inertia in MWs by making use 

of the generators’ current operation plan (COP) and by assuming known inertia constants of the 

generators. The COP submitted by each generator in ERCOT provides an estimate of unit status 

(on/ off) and operating limits for the next 168 hours. A three-hour ahead forecast of the system 

inertia seems to work well for evening hours with high prices (or in general, for high-inertia 
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scenarios), whereas the error for morning hours with low prices (for low-inertia scenarios) is 

significant since generating units change their commitment status with respect to the COP. 

These errors require including additional bias to the forecast when low energy prices are likely 

to result in low inertia.  

A drawback of such methods is that data for inertia constants in the TSO databases of the 

generators seem to be unreliable, and not all generators send their breaker positions to the 

SCADA system. This is an additional issue in case of small distributed generators. 

4.2.2.2 Equivalent network modeling 

The development of equivalent dynamic models of active distribution networks (ADN) (Glavic 

2016). Growing TSO-DSO interactions further foster this research line.  

 (Yu, El-sharkawi, and Wvong 1979) proposes a simplified equivalent model to dynamically 

represent the large power system in the neighboring area of a local power system instead of an 

infinite bus approximation. The power system is represented by a linear model, whose 

parameters are estimated by using a least-square estimation algorithm, i.e., its inertia, damping 

coefficient, synchronous and transient reactance, and the field time constant. (X. Feng, Z. 

Lubosny, and J. Bialek 2006) propose a method to derive a dynamic equivalent of a distribution 

system. The distribution system is considered as a black-box, a model with unknown structure. 

Voltage and frequency were used as input, and real and reactive power as output. The election 

of suitable disturbances is discussed, and finally disconnection and re-connection of loads within 

the distribution system is proposed in order to excite as much as possible only the distribution 

system response. ARX and state-space models have been identified. A black-box approach does 

not allow for specific parameter estimation, e.g., the inertia. Results seem to depend much on 

the type and location of the disturbance. (J. V. Milanović and S. Mat Zali 2013) validate a grey-

box model of a distribution system. The assumed equivalent model structure of ADN comprises 

a converter-connected synchronous generator in parallel with a composite load model. 

Converter-connected synchronous generation simplifies converter modeling. Current control 

dynamics are neglected. Similarly to (X. Feng, Z. Lubosny, and J. Bialek 2006) , real and reactive 

power at the connecting point are the outputs, and voltage and frequency at the connection 

point are the inputs to the equivalent model. (G. Chaspierre et al. 2020) also propose a grey-box 

model, where converter-connected generation and static and dynamic motor loads are 

electrically separated to consider their different location. Monte-Carlo simulations are used to 

consider uncertain parameters. A weighted least-square identification is used such that 

measured active and reactive power approaches their averages, weighted by the inverse of the 

variance. An experimental validation of a grey-box equivalent dynamic model for a microgrid is 

described in (F. Conte et al. 2021). The equivalent model includes synchronous machine, a ZIP 

load, and converter-connected elements, modelled as linear functions of the voltage and 

frequency deviation. A set of experimental tests have been successfully carried out on a real low 

voltage (LV) microgrid considering different configurations, including both grid-connected and 

islanded operating conditions, to show the effectiveness of the approach. 

4.2.2.3 Model fitting and regression 

Measurements of frequency and active power can be used to identify predefined models and 

their parameters. This identification can be carried-out online or offline. Sufficient disturbance 
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must occur therefor. In most of the proposals, PMU measurements are needed. Most models 

are based on the swing equations, which in some cases is modified to consider frequency and/or 

voltage-dependency of loads, the loss of inertia corresponding to a generation outage, etc. 

4.2.2.3.1 Frequency and ROCOF fitting 

(Inoue et al. 1997) makes use of a 5th-order polynomial approximation with respect to time to 

approximate the response in terms of frequency of the system. Response to known disturbances 

are thus needed. A suitable disturbance event is detected if the absolute value of the ROCOF 

exceeds 0.04 Hz/s. Frequency, measured at various 500 kV substations or switching stations, is 

filtered by a moving average filter. This polynomial approximation with coefficients ai filters the 

frequency oscillations (thus ωg = ω) and system inertia is estimated as follows.  
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2 sys
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p p
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In (Tavakoli et al. 2012) a white-box approach is proposed to estimate system load inertia. Load 

inertia is deduced from the system inertia by subtracting the generator inertia and the inertia of 

type 1 and 2 wind generators6. System inertia is computed by using a polynomial like in (Inoue 

et al. 1997). Inertia of wind generators has been assumed to amount to 3 MWs/MVA. The inertia 

constants of generators are known in that approach. 

(Phurailatpam et al. 2020) extends the approach in (Inoue et al. 1997) to microgrids with 

significant penetration of non-synchronous generation. In addition to the frequency curve fitting 

to determine system inertia, a curve fitting process is also applied to the power variations (to 

take into account other factors such as voltage-dependency of loads, etc.). Power is measured 

at every generating unit. The order of the polynomial of the frequency curve fitting is variable 

and depends on the estimation accuracy with respect to an inertia estimation making use of the 

maximum ROCOF. In case of high penetration of non-synchronous generation, the approach 

loses accuracy since inertia emulation is not instantaneous and thus different to inertial 

response of synchronous generation.  

(Sun et al. 2019) presents an online inertia estimation algorithm making use of PMU 

measurements obtained at the terminals of every generator. PMUs measure electrical power 

and frequency. By knowing the variation of the electrical power and by computing the ROCOF, 

the inertia of every generator can be estimated by considering its connection status. Instead of 

using a polynomial approximation like in (Inoue et al. 1997), ROCOF itself is estimated by a linear 

frequency response model, consisting in a linear combination of average frequency and ROCOF 

multiplied by the sampling period. The ROCOF can be estimated by a least square method 

(Moore-Penrose inverse). A sufficiently large perturbation is needed. 

(Zografos, Ghandhari, and Eriksson 2018) proposes a disturbance-based estimation of the 

system inertia. Unlike others, the proposed approach considers both frequency and voltage 

dynamics of the system, and in particular voltage and frequency-dependence of the load. Two 

                                                           
6 In (Sigrist & Rouco, 2017) it has been shown that induction machine introduces a slightly delayed inertial 
response. This response depends on the inertia, the initial loading and the load type.  
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separate methods, which can be combined, modify the swing equation by including a frequency-

dependent term (reflecting load variations, but also possible frequency controls) and/or a 

voltage-dependent term (reflecting load-voltage dependency). The disturbance is supposed to 

be known. Both methods need pre-defined, suitable post-disturbance instants to identify 

frequency and voltage dependency, whereas the frequency-dependent method in addition 

requires additional measurement samples to estimate the frequency dependency, augmenting 

the model. Voltage-dependent variation is derived by using the average generator voltages and 

a ZIP model, assuming some known parameters. Inertia-weighted generator frequencies and its 

derivative are used as input signal for the estimation. The combined method works best. 

(Sun, Q., Li, and Philhower 2021) presents a disturbance-based system inertia estimation. The 

method makes use of the R-approach defined in (Zografos, Ghandhari, and Eriksson 2018b). 

Disturbance size needs to be known. Frequency and its derivative are filtered by means of 

median and moving average filters. A Gaussian progress regression method is used to predict 

the dynamic post-disturbance behavior of the system. 

4.2.2.3.2 Transfer function  

(Schiffer et al., 2019) uses the dynamic regressor and mixing (DREM) approach to estimate 

system inertia and total mechanical power set point of generating units under primary 

frequency control (PFC). The system inertia is estimated by using an equivalent swing equation 

and by measuring the frequencies and the electrical power of the generating units under PFC, 

as well as the total mechanical power of the generating units under PFC after disturbances 

(outages and re-scheduling). The total mechanical power under PFC can also be estimated by 

using suitable model and the average frequency. COI frequency is approximated by the average 

frequency, computed from the measured frequencies. Measurements are filtered and the 

equivalent swing equation is transformed into a standard regression form. Since two parameters 

need to be estimated but only one equation exists, the regression is augmented by a second, 

delayed equation. The gradient algorithm is then used to obtain parameter estimates. Delay, 

filter constant and two parameters of the gradient algorithm are needed. Time of convergence 

of the algorithm seems to be related to the system dynamics. 

(Tuttelberg et al., 2018) presents a method to estimate system inertia from ambient 

measurements data of active power and frequency. System inertia is obtained from area inertia, 

with the boundaries of each area previously defined. The inertia of each area is estimated by 

observing the dynamics between changes in active power demand of the area and the resulting 

weighted-average frequency deviation of the area during normal operation of the system for 

two to six minutes. Load demand variations are deduced from inter-area flows and the area 

generation. An ARMAX model is identified, converted to a further reduced-order continuous 

time model, and the area inertia is identified by its impulse response (see equation (8)): 
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(Lugnani et al., 2020) describes a sliding-window disturbance-based inertia estimation approach. 

A second-order ARMAX model is used, and its parameters are identified by a one-step look 

ahead prediction error problem, solved by gradient-based optimization method. The method 

requires PMUs measurements, which are filtered by a Butterworth filter of 0.5 Hz and assumes 

that a known disturbance has been detected. The post-disturbance window length minimizes 

the estimation variance. The selected disturbance should not be too close to the PMU since it 

might corrupt measurements and differences between speed and bus frequency might be too 

high. Recording length is 30 s, with two cycles for pre-disturbance measurement and a few cycles 

for post-disturbance measurement, depending on the variance of the estimation. The identified 

discrete model is transformed into a continuous-time model as in (Tuttelberg et al., 2018).  

(Kontis et al., 2021) compares two estimation methods quantitatively: a sliding-window-based 

approach ((Wall & Terzija, 2014)) and an ARMAX-based approach (see (Lugnani et al., 2020)). 

The impact of window length, noise level, disturbance magnitude and location as well as the RES 

penetration level is analyzed and compared. Monte Carlo simulations with an SFR model and 

with IEEE 9-bus system are run. Shorter window lengths are beneficial for disturbance-based 

estimations. It seems that ARMAX model works better under moderate noise levels, whereas it 

might fail to provide inertia estimations under high noise levels. For moderate levels, window 

lengths seem to be bounded. Whereas both methods work well under different disturbance 

magnitudes, the sliding-window-based approach seems to be more robust against varying 

disturbance locations and its window length is hardly influenced by the locations. RES 

penetration level does not practically affect the performance.  

(Phurailatpam et al., 2021) describes a disturbance-based approach to estimate the non-

synchronous inertia of AC microgrids. The approach is based on a low-order representation of 

the microgrid’s frequency dynamics, like the SFR models used in the literature, where Diesel 

generators, BESS and other contributions to the inertial response and frequency control are 

modelled as linear transfer functions. The approach assumes that synchronous inertia of Diesel 

generators and the disturbance are known. If the active power output of the Diesel generator is 

known, the governor response can be estimated. According to the availability of the estimated 

governor response, a SISO or a MISO identification method is proposed to estimate no-

synchronous inertia. Possible input and output non-linearities are considered a posteriori 

through Hammerstein-Wiener models, but whereas these models improve response accuracy, 

no conclusions on the estimation of the inertial response are deduced. The impact of load 

contribution (frequency and voltage dependency) has not been considered. 

(Zeng et al., 2020) extends the approach proposed in (Zeng et al., 2020) (see section 4.2.3.2). 

Electrical power and frequency at each generator bus or at area or system-level need to be 

measured by PMUs. For area and system-wide estimation, weighted-average frequency is used 

with weights inversely proportional to frequency variance. Measurements are detrended and 

then filtered by a Butterworth filter of 0.5 Hz cut-off frequency. A general model of the 

generator, area or system and its most appropriate order are obtained by a subspace 

identification method for a given window length. The model is then excited by a unity step to 

obtain the ROCOF and lastly the inertia. The estimated inertia over a given window is updated 
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with a given refresh rate using new estimations available. An exponential smoothing method is 

also used to further smooth inertia estimation. 

4.2.2.4 Numerical evaluation of the swing equation 

The swing equation can be used to estimate an equivalent inertia if frequency and active power 

measurements are available (see sections 2 and 3.1.3). ROCOF can then be numerically 

computed in different ways by using finite differences, sliding windows, etc. Such swing-

equation-based methods can estimate the inertia offline or online in case of a sufficiently rich 

disturbance. In case of online estimation, the detection and identification of the disturbance is 

a key point. 

(Chassin et al., 2005) estimates the system inertia from frequency measurements of a single 

location, with a resolution of 0.1 s and a 0.001 Hz after a suitable event. The measurements are 

filtered by a 0.5-Hz filter before estimating the inertia through the swing equation. From 167 

events, a somewhat linear relationship between system demand and system inertia has been 

identified. Variations of inertia for a given system demand might be due to factors such as 

seasonal and diurnal variations of dispatch, annual variations of hydro generation and its 

available inertia, and variations of the actual lost power output with respect to the assumed 

(scheduled) output. 

(Bian et al., 2018) proposes a method to determine inertia contribution of demand by estimating 

system inertia from past frequency events and subtracting the generation contribution from it. 

System inertia is computed from the known unbalance size and the ROCOF. The generation-side 

contribution is estimated from the dispatched power, corrected by a factor that relates power 

output to the capacity (this factor is the system primary frequency control gain by assuming that 

reserve is correlated with the capacity). The results indicate that on average 20% of the total 

system inertia was provided from the demand side with an average inertia of 1.75 s in 2010. 

Penetration of VFD motor loads will increase primary frequency control requirement.  

(Ashton et al., 2015) proposes a method to estimate the total system inertia after suitable 

events. The method uses of PMU measurements. Frequency is calculated from time derivatives 

of voltage phasor angles and filtered by means of a Butterworth low pass filter of 0.5 Hz cut-off 

frequency to minimize the influence of the measured transients before estimating the RoCoF7. 

The suitability of an event is determined by a detrended fluctuation analysis (DFA), comparing 

fluctuations with a threshold. A suitable event is chosen when the fluctuation decreases below 

the threshold within 1 s. Total system inertia is finally deduced by summing up regional inertia 

values of large synchronous generators, assumed being known. This sum is multiplied by the real 

size of the disturbance and divided by the estimated size, obtained as the product of the regional 

frequency derivative computed over a 500 ms sliding window and the regional inertia. The paper 

shows that seven PMU measurements (seven regions) are sufficient to estimate the GB inertia 

and that the linear relation between demand and inertia does not hold. 

                                                           
7 Same authors (see (P. M. Ashton et al., 2013)) previously used a fifth order polynomial. This has since 
been found to be unsuitable, as the fitting of the polynomial is too dependent on frequency effects well 
outside inertial time-scales, due to the curve having to be aligned with up to 20 s of data. 
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(Fan et al., 2013) proposes an inertia estimation method known as “finite difference method” 

which is based on PMU measurements, the classical generation model and the swing equation. 

It assumes that the PMU is located at an equivalent generator terminal (an area). Finite 

difference approximations of time derivatives of measured active power and estimated rotor 

angles are used. White noise affects derivatives computation by finite differences and needs to 

be filtered. 

(Wilson et al., 2019) presents an online disturbance-based method for the measurement of 

effective inertia based on on the assumption that the power system can be considered as 

multiple centers of inertia, coupled through the network. The effective inertia of each area is 

identified by measuring the variation of the power flow through the area boundary and the 

area’s frequency. The method requires an area of the transmission system to be bounded by 

PMU measurements, such that the total net power flow into the area can be measured. 

Similarly, PMU measurements are also used to create an equivalent frequency to represent the 

area. Instead of using ROCOF, the effective inertia is calculated by integrating the power flow 

through the area boundary:  
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Since estimation is time-varying, it must be post-processed by considering the linearity of the 

inertia function, time history, and precedence of lower inertia value estimates. A quality 

indicator is used to apply the method for smaller disturbances. Finally, a linear-relationship 

between areal effective inertia, demand and estimated total synchronous inertia is found. A 

similar approach is used by (GE, 2021). 

(Federico Milano & Alvaro Ortega Manjavacas, 2020a) propose an inertia estimation based on 

the rate of change of power (ROCOP). The initial proposal computes the inertia by using the 

internal reactance of the generator, xg, ROCOP and double-time derivatives of bus frequency, 

Δfg, and ROCOP,
gp , measured by a PMU: 
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(Liu et al., 2021) extends the inertia estimation based on the rate of change of power (ROCOP), 

presented in (Federico Milano & Alvaro Ortega Manjavacas, 2020a) by providing two additional 

formulations that mitigate the numerical issues suffered by the initial proposal. The first 

formulation tackles the numerical issues by converting the initial algebraic estimation into first-

order dynamic model, with variable, non-linear gain, depending on the double time-derivative 

of the rotational speed, and a time constant. This first-order model also acts as a filter. The 

second formulation includes the effect of the damping factor, by estimating it in parallel in a 
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similar manner with a first-order dynamic model. Actually, the damping rather estimates the 

damping plus primary frequency regulation gain of synchronous generation or the primary 

frequency regulation gain in the case of non-synchronous generation using a VSM approach. The 

first formulation works fine for synchronous generation, whereas the second formulation works 

better for non-synchronous generation than the first formulation.  

(Wall & Terzija, 2014) presents an algorithm to simultaneously estimate the time of 

disturbance8 and the system inertia at that time. The estimation is based on the swing 

equations, neglecting the damping coefficient and approximating the mechanical power by the 

previously measured electrical power, and thus needs frequency and active power 

measurement of one single location. This is suitable for small systems but not necessarily for 

large systems. The selection of suitable locations is not addressed. The estimation of the inertia 

is based on four sliding data windows, two for frequency derivative and two for active power 

measurements. The time of disturbance can be extracted from the fact that measurements 

converge, which in turn is detected by analyzing the residuals between the last and the current 

estimations. Convergence issues due to damping can be mitigated by setting up an additional 

time-dependent band, where the estimate must fall. The algorithm depends on five user defined 

values (window length, residual threshold, etc.), which are system and event dependent. Noise 

and small window lengths (faster estimation) could also cause convergence problems. Increasing 

window length reduces the risk of false disturbance detection, but leads to overestimation of 

the time of disturbance and the inertia and increases computation effort. The residual threshold 

should be increased with increasing noise to ensure disturbance detection, but this increases 

the risk of false detection.   

(Azizipanah-Abarghooee et al., 2019) proposes an online method to estimate the size of the 

active power unbalance and the system inertia simultaneously. The method is based on a 

modified swing equation of the COI, considering an estimation of the lost inertia. ROCOF of the 

COI frequency measurements after a disturbance are used to compute the inertial response, 

considering frequency dependency of loads, and the post-disturbance inertia. The size of the 

disturbance is interpolated from the inertial response over a time window of 1s to contemplate 

PMU measurement delays and measurement unreliability (e.g., frequency undershoot). 

                                                           
8 The detection of time and size of the disturbance is critical for inertia estimation. (W. Wang et al., 2020) 

describes a method to detect the time of occurrence of a disturbance. The method filters frequency 

through a moving average window and it computes the frequency second derivative from the ROCOF, 

obtained both by applying fixed time windows to ROCOF and frequency measurements by PMUs. The 

time of occurrence is deduced from the minimum value of the second derivative. However, and although 

not mentioned, a threshold is needed to distinguish multiple consecutive disturbances. (Shams et al., 

2019) presents a method to detect, locate and size a disturbance in the system. It does not require an 

inertia estimate. The method is fundamentally based on the distribution of the power disturbance among 

a set of generators, which depends on the relative synchronizing power coefficient, that in turn is related 

to the electrical distance. The method requires power measurement at a set of generators through PMUs 

and estimates the disturbance through the power disturbance distribution. The disturbance is detected 

by using a decision tree with respect to two indices making use of the power disturbance estimation. The 

location and size depend on one of the indices denominated normalized mismatch vector. 
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4.2.2.5 Modal analysis 

According to 3.1.2, the inertia and the damping coefficient of the classical synchronous 

generator model are intrinsically related to the electromechanical oscillations quantified by the 

oscillation frequency and the damping. In case of multi-area systems, inter-area oscillations 

contain the inertia- and damping-related data. Typically, methods based on modal analysis 

tackle area-wide inertia estimation.  

In (J. H. Chow et al., 2008) a parameter estimation method is developed, exploiting 

electromechanical oscillations. It assumes that the system can be separated into two areas with 

a transfer path between them and two PMUs installed at both ends. The method estimates first 

the reactance of the transfer path (by neglecting line resistance, being reasonable for 

transmission system), then the internal voltages and angles, and finally the system inertia by 

observing oscillation frequency. The values of the inertia for individual areas are obtained by 

observing relative speed variations. 

 (Guo et al., 2014) propose a methodology for online estimation of the parameters of a known 

dynamic power system model by employing the values of system modes, i.e., the modal 

frequencies and damping calculated from online WAMS measurements. It is assumed that the 

dynamic modes have been previously estimated. Modal sensitivity analysis is used to locate 

generators where parameter variations have most impact. The modal assurance criterion (MAC) 

pairs the observed oscillatory modes with those in the original model. A weighted least square 

estimation calculates the parameters by making use of the sensitivity matrix and, optionally, 

pseudo-measurements consisting of initial parameter value guesses. These guesses need to be 

accurate and some knowledge of the range of parameter variations is required.  

(G. Chavan et al., 2017) describes a reduced-order, five-generator equivalent model of the 

Western Electricity Coordinating Council (WECC). The parameters of the model, i.e., equivalent 

inter-area line impedance, damping and inertia, and the generator reactance, are identified by 

extracting the slow oscillations using modal decomposition (e.g., prony analysis, etc.). Area 

equivalents are based on historical coherency; the pilot bus of each equivalent area need to be 

equipped with a PMU, all area generators need to be behind that bus, and pilot buses of 

different areas need to be connected. Whereas the impedance of the line and the reactance can 

be estimated by means of voltage and current measurements, damping and inertia are 

estimated from the slow oscillations by formulating a least square problem.  

In (Cai et al., 2019), the extraction of the oscillation’s parameters (damping and frequency) is 

carried out by means of an adaptive local iterative filtering decomposition (ALIFD). Further, the 

method supposes oscillations between two areas, which in case of multi-area systems have been 

obtained by an appropriate network reduction including coherency.  

(Yang et al., 2020) presents an area-based inertia estimation approach by using ambient data 

measured by PMUs. Inertia estimation is based on the modal information of inter-area 

oscillations. A two-generator equivalent of an interconnected power system is identified and 

constructed for a particular mode. Electrical power interchange is measured directly, whereas 

internal angles are deduced from the current injection phases. The modal information 

(eigenvalue and right eigenvector, extracted from the average frequency) is obtained by means 

of the recursive adaptive subspace identification and determines the total two-generator 
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equivalent inertia. The inertia of each Individual area is obtained by knowing the definition of 

the equivalent inertia and the inertia-relationship, depending on the eigenvalue and right 

eigenvectors. Identification of equivalent two-generator systems might not always be feasible 

and could lead to significant errors.  

 (Wang, B. et al., 2020) describes an online inertia estimation algorithm that uses of ambient 

data to extract modal information on the electromechanical oscillations. From the 

autocorrelation power spectral density, showing two peaks under white noise excitation, it can 

be inferred, that oscillations are contained in ambient response. The modal information is 

extracted from ambient data obtained through PMU measurements by means of stochastic 

subspace identification (SSI). PMU measurements are angle (internal angle) and electrical power 

of each generator. Simulations and experiments for a single-generator to infinite bus system 

show the applicability of the method.  

 (Panda et al., 2020) describes an online method to estimate element and area inertia using a 

known or detected disturbance. VSMs can be contemplated. The method uses PMU frequency 

measurements, and modal information is extracted by means of a method called estimation of 

signal parameters via rotational invariance techniques (ESPRIT), requiring a predefined model 

order (number of modes). An equivalent mode of detected modes is derived by computing the 

qth coefficients of the discrete Fourier transform of a given window. Since the sum of the modes 

of the frequency provides the frequency signal, the sum of the qth coefficients of the Fourier 

transform of each mode gives the qth coefficient of the Fourier transform of the frequency 

signal. Inertia is then computed based on the swing equation and by using the damping and 

frequency deduced from this qth coefficient, the measured active power variations, and the 

computed (not measured) ROCOF. Window length, selection of q, and model order are critical. 

Selection of q seems to be oscillation frequency related, but no guidelines are given. Initial 

measurement samples are discarded to avoid phase jumps in the measurements of PMUs. 

(Yang et al., 2021) presents a disturbance-based estimation of area effective inertia by extracting 

inter-area modal information from PMU measurements. The estimation assumes the existence 

of coherent areas that can be represented each by the swing equation. Speed deviations and 

electric power deviations of each area should be measured, where speed deviations are 

approximated by the weighted-average area frequency and the electric power by the sum of the 

power in the tie lines. Dynamic mode decomposition (DMD) is used to extract from two 

snapshots of matrices of measurements the eigenvalues and DMD modes (eigenvector). The 

swing equation can then be re-written in terms of the DMD modes of the speed and electric 

power deviations and, thanks to their complex-valued nature, the inertia and damping can be 

computed. Appropriate modes need to be extracted from the measurements.  

4.2.2.6 Artificial neural networks 

Since the inertia estimation as any parameter identification problem can quickly become very 

complex due to limited measurements, simplifications of the underlying model and 

phenomenon, etc., artificial neural networks (ANN) have been proposed for this purpose. ANN 

need to be previously trained. 

 (A. Schmitt & B. Lee, 2017) describes the use of an ANN to estimate system, area and bus inertia 

under normal operation conditions. The ANN’s input consists of modal information of the 



A review of methods for the estimation of inertia and its distribution 
 

 

 

 

29  October 2021 

oscillations inherent in frequency measurements at buses. Empirical mode decomposition 

applied to the frequency measurements of a time window of 2 seconds provides modal 

frequency and damping. The ANN has been trained by simulating hundreds of different cases 

where system fluctuations have been caused by random load variations and by extracting the 

first four modes. Whereas area and system inertia could be predicted relatively well, bus inertia 

prediction is far less accurate since relation between modal information and individual bus 

inertias is less clear.  

In (Hartono et al., 2019), the ANN is trained and tested with the frequency responses of a system 

that have been simulated with several inertia values and subject to various disturbance 

magnitudes. The extension of the simulation campaign and the details of the underlying model 

are unknown.  

In (E. S. N. R. Paidi et al., 2020), a wide range of scenarios of wind generation penetration and 

load cases have been contemplated to train an ANN. For each scenario and case, a system 

equivalent inertia has been derived from the inertia parameters of SGs and the other 

components in the system that contribute to the inertia. A Pearson correlation analysis has 

shown that the total active power generation from all synchronous generators, total active 

power produced by all non-synchronous generators, and total dynamic induction motor power, 

measured by PMUs through WAMS, are the most suitable input variables for the ANN. PMU 

measurements have been simulated in DigSILENT and RTDS.  

4.2.2.7 Stochastic estimation 

The amount of available system inertia can be represented as a result of several stochastic 

processes. Furthermore, measurements and estimations are always subject to uncertainties. 

 (X. Cao et al., 2016) presents a switching Markov Gaussian model (SMGM) to estimate system 

inertia online during normal operation conditions by using the steady-state frequency as input. 

The complex stochastic interdependency of frequency and inertia suggests the use of Gaussian 

mixture models. Parameters of the Gaussians are determined according to the expectation 

maximization, and the number of mixtures according to the minimum Bayesian information 

criterion. Temporal dependence is encoded as mixed-order Markov chains. The “skip k transition 

autoregression” technique determines which prior states are regressive with the current state. 

Slice sampling is used to draw samples from the mixture distribution. SGMG is trained using 

historical data. A fourth-order SMGM seems outperform a mixture model only. A periodic online 

re-calibration is needed to limit the accumulated inertia estimation, which uses dispatch 

information therefor. Further, the method is dependent on a set of parameter and choices 

(number of mixtures, conditional distribution covariance matrix, sampling selection approach, 

etc.). It is not valid during disturbances.  

(N. Petra et al., 2017) proposes a Bayesian disturbance-based approach to estimate the inertia 

with uncertainty. The solution of the Bayesian inverse problem quantifies through computing 

the statistics of the pdfs how much information from the measurement data can be used to 

identify the inertia. A local Gaussian approximation of the posterior around the maximum a 

posteriori (MAP) point of the inertia and its variance is used therefor. Two methods are 

proposed to compute the MAP and parameter uncertainty: (i) adjoint-based method and (ii) 

stochastic spectral method. The approach has been applied to a 9-bus system. Bus voltage is 
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measured and an estimation window of 1 s seems to be sufficient. Larger perturbation reduce 

variance. Stochastic spectral method seems to be less demanding in terms of computation 

effort. Fewer measurements points (less observations) have low impact. Larger system requires 

further work.  

(Allella et al., 2020) proposes a method which uses a stochastic process to estimate the system 

inertia. It is assumed that non-synchronous generation does not provide inertia. The inertia is 

modeled as the sum of periodic components and a weakly stationary stochastic process 

distributed according to a logistic distribution. The model is trained by inertia measurements 

obtained according to the breaker status (SCADA) and the knowledge of individual inertia 

constants. The measured inertia shows periodic components of 24, 12, 6 and 4 hours obtained 

through Goertzel’s method. The measurements, corrected by subtracting the periodic 

components, are then used to identify the stationary process by means of a first-order auto-

regressive model. 

4.2.2.8 Kalman filters 

Kalman filters (KF) have been widely applied for dynamic state estimation and parameter 

estimation. EKF enhance KF by considering nonlinear models that are linearized. A central and 

vital operation performed in the KF is the propagation of a random variable through the system 

dynamics. In the EKF, the state distribution is approximated by a random variable, which is then 

propagated analytically through the first-order linearization of the nonlinear system and which 

could introduce errors in the true posterior mean and variance of the transformed random 

variable. (Vieyra et al., 2020) uses the UKF to estimate the dynamic states of an islanded 

microgrid, described by a set of algebraic differential equations (DAEs). The UKF calculates the 

statistics of random variables that undergo a non-linear transformation since it is easier to 

approximate a distribution function than to approximate the nonlinear transformation. To 

incorporate parameter estimation within the KF, the model needs to be augmented (e.g., (Z. 

Huang et al., 2013) and (Fan, Lingling & Wehbe, 2013). 

(Ariff et al., 2015) proposes an approach to estimate dynamic model parameters by processing 

PMU measurements through an UKF. A classical generator model has been used a priori with 

constant mechanical power, augmenting the state vector by its parameters and process noises 

of active power and voltage measurements. Covariance matrixes of process and measurements 

noise are assumed to be constant and known. PMU measurements at every generator terminal 

are assumed to be known, too. Parameter and state variables are estimated within 1 s. The 

results have been compared with EKF ((Z. Huang et al., 2013) and (Fan, Lingling & Wehbe, 2013)), 

leading to faster and more robust estimations. 

(Zhao et al., 2019) proposes a method to estimate rotor angle, speeds and inertia in an online 

manner to finally estimate the frequency of the COI. The generator active power and rotor 

speeds need to be measured by or estimated through PMUs measurements. The method is 

based on a discretized version of the generators’ swing equation and makes use a modified 

Kalman filter approach (to account for measurement losses and outliers (J. Zhao et al., 2017)) 

for the joint estimation of generator rotor speed, angle and inertia constant. The joint estimation 

of the inertia augments the state variables by the inertia (see (Ariff et al., 2015)). Estimating the 
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inertia simultaneously improves estimation of COI frequency. In (Wang, X. et al., 2020), a similar 

approach to (Zhao et al., 2019) is used to estimate online the rotor angle and speed. 

4.2.2.9 Disturbance injection 

Whereas previous methods make use of event-based disturbances or ambient data, other 

methods actively perturb the power system. This has the advantage of knowing the disturbance 

precisely, whereas the active injection of a disturbance might pose a problem at the same time. 

Typically, these approaches make use of methods similar to those in sections 4.2.2.3 and 4.2.2.4.  

(J. Zhang & H. Xu, 2017) proposes a real-time online equivalent inertia constant identification 

method. A closed-loop microperturbation method (MPM) is proposed. The closed-loop MPM 

uses PMU measurements to estimate the system inertia constant from the bus at which the 

system is connected to. The MPM injects a multisine probing signal with sufficient energy with 

respect to possible noise by means of a power electronic device (inverter, AVR, etc.). Inertia is 

then estimated by identifying two transfer functions by means of the orthogonal decomposition-

based subspace method and then dividing them: (i) between the frequency and the signal, and 

(ii) between active power and the signal. Frequency response fitting is finally used to reduce the 

measured transfer function to the equivalent transfer function and to extract the inertia. Unlike 

indicated, the method seems to estimate the inertia of elements and not the system as a whole.  

(Best et al., 2021) estimates the system inertia by making use of known perturbations, caused 

by the flow changes on a HVDC interconnector. The method makes use of the kinetic energy 

rather than the inertia. It measures energy variation due to the perturbation and frequency 

between two instants. The paper suggest that the measurement should not be taken to early 

since initial transients affect computation and frequency measurement. Energy variation is 

computed by integrating perturbation power corrected by an estimate of the system response, 

modelled as a time delay with linear response (see (I. Egido et al., 2009)). Frequency is measured 

over 500 ms moving average. The paper also quantifies the inertia of auxiliary power station 

loads (around 10% of generator inertia) and of the demand (see (Bian et al., 2018)).  

(S. Shah & V. Gevorgian, 2019) proposes a system inertia estimation making use of a frequency 

response function between a known active power injection and the measured frequency at the 

point of injection. The frequency response function is obtained by injecting sinusoidal power 

perturbation with a given frequency by for instance a battery storage system and measuring the 

corresponding system frequency. For each perturbation frequency, the corresponding Fourier 

coefficient of the power and the system frequency are used to compute the response function. 

A resonant dip in the frequency response function is related to the inertia. How the inertia is 

extracted from the peak is not fully clear. It is also shown that the system frequency response is 

related to the dq-domain impedance of the network. 

A commercial product on inertia estimation also actively injects an active power disturbance and 

measures frequency deviations at different parts of the network (Berry, 2019). Inertia estimation 

is based on the swing equation. 

4.2.3  Inertia distribution 
Most of the reviewed approaches focus on inertia estimation, i.e., the amount of inertia 

available, but do not directly consider inertia distribution. A first step in this direction is given by 
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splitting the system into predefined areas, providing a rough estimation of the inertia 

distribution. The use of modal analysis inherently considers the distribution of inertia since 

oscillation frequency of modes not only depends on the inertia but also the electrical distance, 

i.e., the grid (see sections 3.1.2 and 3.2). (Pagnier & Jacquod, 2019) has shown that the slowest 

network mode, called Fiedler mode, has a large impact, and adding inertial response in Fiedler 

areas (areas participating in the Fiedler mode) is beneficial.  

4.2.3.1 Indices 

Inertia distribution can be determined by means of indices. (Wang, Y. et al., 2017) describes two 

indices to calculate the distribution of inertia. For a perturbation at each bus, the first index uses 

the difference of synchronous machine speeds, whereas the second index uses the difference 

of the bus frequency and the frequency of the COI. These indices help determining the closest 

(minimum index) and furthest (maximum index) location from COI, and regions with similar 

indexes. Measurements of all machine speeds and bus frequencies are needed. In fact, the 

difference of the bus frequency with respect to the COI frequency is measured rather than the 

actual inertia distribution. However, a frequency close to the one of the COI indicates that the 

corresponding bus is close to the COI. 

(Pulgar-Painemal et al., 2018) studies the location of non-synchronous elements that are 

enabled with either damping controllers or inertia emulation controllers. The paper analytically 

derives an expression for a simple two-generator system that relates the COI with an electrical 

location. The relative distance of the COI is inversely proportional to the relation of the inertias 

of the two generators. The eigenvalue sensitivity, expressed in terms of the residue and the 

controller transfer function when written in explicit hybrid form, shows that the residue is larger 

(i.e., the sensitivity) for larger relative distances. For larger system, the inertia distribution index 

is introduced, using the difference between the bus frequency and the COI frequency (see (Wang 

et al., 2017)). The index allows defining inertia regions according to the similarity of the index 

(called layer, requiring expert knowledge). Bus and generator frequencies are needed. Further, 

the index and the residue seem to be correlated. 

(Xiao et al., 2019) assesses the spatial and temporal distribution of system inertia. Together with 

the results of a unit commitment (UC) and the PMUs measurements, two indexes are computed: 

(i) the rate of change of inertia with respect to the non-synchronous generation penetration, 

and (ii) the inertia distribution index (as in (Wang et al., 2017)), which takes into account the 

sampling period of the PMUs.  

(Brahma & Senroy, 2021) defines two indices to quantify the dynamic grid flexibility of a power 

system. Dynamic grid flexibility merges operational flexibility and small signal stability. The two 

indices are: inertial index and dynamic flexibility index. The former is defined as the sensitivity 

of the critical electromechanical eigenvalue to active power injection, whereas the latter is 

computed by multiplying the row-wise sum of the inertial sensitivity matrix (partial derivatives 

of the bus angles to the generator angle and generator speed) and the right eigenvector of the 

critical eigenvalue. The angle information of the inertial index of all buses can be used to 

categorize all the buses into coherent bus groups. A large inertial index indicates that bus angles 

strongly vary with generator angles and speeds. This looks similar to the index in (Wang et al., 

2017). 
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4.2.3.2 Bus distribution 

(You et al., 2018) presents a non-invasive approach to measure system inertia distribution by 

using frequency measurements from PMUs. It makes use of the non-uniformity of the 

electromechanical wave propagation speed during active power imbalances. The continuum 

model was used to analyze wave propagation, that describes an inverse relationship between 

the inertia (of per unit length of the continuum model) and the propagation speed, evaluated 

through the time of arrival at different PMUs. Since PMU coverage is incomplete, measurement 

interpolations are used. Data quality and timing issues make necessary to check the measured 

time of arrival by applying a linear regression between the measurement point and the 

estimated location of the disturbance (smallest time of arrival calculated).  

(Zeng et al., 2020) estimates bus inertia from ambient data. By making use of the frequency 

divider (Federico Milano & Alvaro Ortega Manjavacas, 2020a) and the swing equation, the bus 

inertia depends on the generator’s inertia values and on the electrical distance of the bus to 

each one of the generators. First, the generator transfer functions, relating generator active 

power and a bus frequency deviation, are identified through a subspace identification method 

and by measuring electrical power at each generator and the frequency at the bus of interest j. 

Virtual inertia could be considered. Instead of reducing the transfer function to the one of the 

swing equation, the identified transfer functions are simultaneously excited with a unit step 

input and the bus inertia can be computed from the derivative of the rotor speed variations 

together with the electrical distance mgj,: 
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The approach computes the inertia distribution since bus inertia values are not independent; it 

looks like an inertia divider. 

5 Discussion 
This section discusses the needs and assumptions behind inertia estimation methods. Since 

inertia estimation is a parameter-identification problem, the suitability of the underlying model, 
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the exciting trigger signal and measurements used are key issues to be considered. Discussion 

turns thus around: 

- Measurements 

- Trigger signal 

- Models 

- Methods 

- Scope and distribution 

The applicability of inertia estimation methods to distribution system is finally discussed. 

5.1 Measurements 
Most of the inertia estimation methods are based on PMU measurements. These measurements 

when within a WAMS are synchronized, time-stamped measurements. For both online and 

offline estimation methods, the availability of synchronized, time-stamped measurements is of 

paramount importance since time shifts induce estimation errors. Measurements should have 

sufficient resolution and accuracy. The fundamental frequency sampling rate of PMUs seems to 

be sufficient (sampling frequency should be at least 8 Hz (Tavakoli et al., 2012)). In Ireland, fast 

frequency response (FFR) recorders are required to have a time resolution of 20 ms and a time 

synchronization accuracy of 2 ms. 

Since measurements suffer from noise, measurements are filtered. Moving average filters, 

sliding window filters, median filters, Butterworth filters, etc., have been proposed. The 

computation of ROCOF from the frequency could further accentuate noise and oscillations. 

Commonly, Butterworth filters have a 0.5 Hz cut-off frequency, which filters out some of the 

electromechanical oscillations present in the measured signal. The impact of the window length 

has been analyzed in addition to the impact of noise level. Increasing the window length leads 

to overestimation of the inertia and increases computation effort (Wall & Terzija, 2014). The 

comparison of two estimation methods has shown that shorter window length is beneficial for 

disturbance-based estimations (Kontis et al., 2021). It seems that ARMAX models work better 

under moderate noise levels, whereas it might fail to provide inertia estimations under high 

noise levels. For moderate noise levels, window lengths seem to be bounded. Whereas both 

methods work well under different disturbance magnitudes, the sliding-window-based 

approach seems to be more robust against varying disturbance locations and its window length 

are hardly influenced by the locations. (Lugnani et al., 2020) suggest determining the post-

disturbance window length to minimize the estimation variance. Further data treatment might 

be needed to tackle PMU measurement delays and measurement unreliability such as the 

measurement-induced frequency undershoot.  

Whereas the deployment of PMUs throughout the transmission grids is increasing, their use in 

distribution grids is far less common. Many approaches initially used a single frequency and/or 

disturbance power measurement to estimate inertia. A single-node frequency measurement is 

however usually not sufficient unless measured very close to the COI. The COI is however time 

and spatial varying according to the unit commitment of generating units. COI frequency can be 

approximated by weighting frequency measurements taken at well chosen locations 

(KUIVANIEMI M. et al., 2015). In this regard, PMUs can help providing synchronized frequency 
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measurements at several locations to be processed. Some methods require however a very 

dense PMU measurement grid, even at every terminal (e.g., (Ariff et al., 2015), (Zhao et al., 

2019), (Sun et al., 2019)) 

The estimation of system inertia from estimated area inertia is a particular application, where 

the time and spatial variation translates into the determination of the area and its boundary. 

The location of PMUs is thus of particular concern. Experience or coherency-based solutions 

have been used. PMUs should not be collated too close to the disturbance since it might corrupt 

measurements, worsening the results of approaches based on the assumption of small 

differences between speed and generator terminal frequency. (Lara-Jimenez et al., 2017) 

presents a method to determine suitable PMU measurement locations for inertia response 

estimation. Generator groups that form aggregated sources of inertial response are identified, 

as well as their inertial centers, where PMUs should be placed. These groups are obtained by 

applying a graph theory-based spectral clustering algorithm. Dynamic graph edge weights are 

defined, depending on the inertia, the electrical distance, and the angle difference. Eigenvectors 

(spectrum) of the graph’s Laplacian and the eigengap are used to obtain the number of clusters. 

The inertia center of each group can be computed in terms of the electrical distance among the 

non-generator buses within the group or in terms of an inertia-weighted electrical distance 

among generator and non-generator buses. The inertia-weighted approaches provide better 

results. Similarly to coherency-based solutions, the method requires the knowledge of the 

inertia of the generators connected, where their commitment status can vary significantly.  

5.2 Trigger 
Inertia estimation has been divided into event-based estimation and continuous estimation. 

Estimation algorithms can run online or offline, where offline algorithms are mostly event-

based. The trigger of the estimation can be (i) a ringdown signal (large disturbances), (ii) ambient 

signal (continuous small disturbances), (iii) and probing (injection) signal. Methods requiring a 

significant event (large disturbance) suffer from the inherent drawback that such disturbances 

luckily do not occur often.  

Many inertia estimation approaches are based on a ringdown signal, i.e., they require the 

presence, detection and identification of a sufficiently large disturbance. Initially, most 

approaches assumed known disturbances, which was a suitable assumption for offline inertia 

estimation (e.g., after a large incident). The significance of the disturbance has been assessed 

through the ROCOF, by comparing the measured value with a threshold. Suitability of an event 

can also be determined by a detrended fluctuation analysis (DFA), comparing fluctuations with 

a threshold. In (Ashton et al., 2015), a suitable event is chosen when the fluctuation decreases 

below the threshold within 1 s.  

Nonetheless, for online estimation methods, the size and instant of the disturbance is not 

usually known. Sometimes, the disturbance can be measured. For instance, for well defined 

areas (in its limit case, a grid connected to another one through a single line), the boundary 

power flows in addition to the frequency and voltage could be measured, providing an 

estimation of the area unbalance. If areas cannot be previously defined or not sufficient 

measurement points are available, inertia and disturbance (size and instant) can be estimated 

simultaneously. (Wall & Terzija, 2014) presents an algorithm to simultaneously estimate the 
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instant of disturbance and the system inertia at that time. (W. Wang et al., 2020) describes a 

method to estimate the time of occurrence of a disturbance, whereas (Shams et al., 2019) 

presents a method to detect, locate and size a disturbance in the system. It does not require an 

inertia estimate. (Azizipanah-Abarghooee et al., 2019) proposes an online method to estimate 

the size of the active power unbalance and the system inertia simultaneously. The size of the 

disturbance is interpolated from the inertial response over a time window of 1s to contemplate 

PMU measurement delays and measurement unreliability. 

5.3 Models 
In most references, the underlying model is given by the swing equation, representing either the 

system, an area, or an element. The damping term is mostly neglected. A sufficiently accurate 

estimation of the disturbance and of the ROCOF would allow estimating the inertia. Indeed, this 

approach could be appropriate for a synchronous machine and/or loads. With respect to loads, 

(Best et al., 2021) quantifies the inertia of auxiliary power station loads around 10% of generator 

inertia) and of the demand.  

However, the swing equation as such neglects other responses within the system such as those 

of loads to a disturbance. (Zografos et al., 2018) considers both frequency and voltage dynamics 

of the system, and in particular voltage and frequency dependence of the load. (Phurailatpam 

et al., 2020) uses a curve-fitting approach to consider load variation. Other modifications 

contemplate the estimation of an equivalent droop through solving a linear set of equations 

with augmented measurements (Zografos et al., 2018) or the direct modeling of primary 

frequency control (e.g., (Schiffer et al., 2019) or (Best et al., 2021)). Finally, (Tuttelberg et al., 

2018) coins the term effective inertia to include virtual or emulated inertia and voltage and 

frequency dependency of loads. The effective inertia actually relates active power variations 

with ROCOF. However, notice that voltage and frequency dependence of loads per se do not 

contribute to inertia itself but to the reduction of the size of the disturbance (e.g., frequency-

dependent loads do not oppose to power variations but reduce power consumption if frequency 

drops). 

Some works include high-order models, mainly of synchronous generators, adding excitation 

dynamics to the individual swing equations. Especially for approaches based on Kalman filters. 

Individual swing equations coupled through grid equations, mostly lossless, can be found in 

approaches making use of modal analysis. Regardless the detail of the individual or 

(system/area) equivalent synchronous generator, penetration of non-synchronous devices that 

could provide inertia has seldom be contemplated directly. (Phurailatpam et al., 2020) highlights 

that its approach loses accuracy since inertia emulation is not instantaneous and thus different 

to inertial response of synchronous generation. (Zeng et al., 2020) states that virtual inertia 

could be considered but does not provide further insight. Finally, (Fernández-Guillamón et al., 

2019) compares different system inertia methods and their applicability when non-synchronous 

generation provides virtual inertia (inertia emulation). In particular, the impact of emulating 

inertia by means of temporary overproduction (TOP) of wind power plants is studied. The results 

show that the methods considered provide reasonable estimates when the non-synchronous 

generation does not provide virtual inertia. However, only the method reported in (Wall & 

Terzija, 2014) provides an appropriate estimation of the system inertia. One possible reason is 
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that TOP hardly influences the initial ROCOF but rather subsequent instants. Considering sliding 

windows as in (Wall & Terzija, 2014) around the estimated instant of the disturbance seems to 

be beneficial. For estimation methods relying on a model, it seems important that such models 

capture the dynamics, i.e., TOP. This will be especially true for Kalman filter based methods. 

5.4 Methods 
Static and dynamic inertia estimation methods have been reported. Static estimation makes use 

of static information, i.e., the monitor breaker status of generation units and combine the 

breaker status data with the corresponding inertia value, extracted from a data base. The 

drawback lies in the need for accurate and updated data base and in the difficulty the breaker 

status of all generation units.  

In turn, dynamic estimation uses recorded responses of the system. Most dynamic inertia 

estimation methods can be grouped according to the underlying phenomenon: 

electromechanical oscillations or speed acceleration. Inertia estimation can also be understood 

as a part of equivalent dynamic network modeling, providing however only a single inertia value. 

Independent of the scope, different methods based on the swing equation have been proposed. 

The swing equation has been reformulated such that energy and frequency measurements can 

be used for its evaluation ((Tavakoli et al., 2012), (Wilson et al., 2019)). (Federico Milano & Alvaro 

Ortega Manjavacas, 2020a) propose an inertia estimation using the rate of change of power 

(ROCOP), based on a further time derivative of the swing equation. Polynomial approximation 

of different orders for frequency and powers have been proposed, which are then used within 

the swing-equation model. The proposed polynomial fitting requires longer measurement 

horizons and depend on other effects outside inertial time scales. Instead of using a polynomial 

fit of the frequency, ROCOF can be computed through finite differences (Fan et al., 2013) or even 

by building a discretized linear (frequency) model (Sun et al., 2019), solved by the least square 

method. Transfer functions have been directly identified online by implementing ARMAX 

models, requiring non-linear optimization such as gradient-based method to solve for the 

parameters to be estimated. Non-linearities such as limits, dead bands, etc. can however affect 

the estimation under large disturbances, Hammerstein-Wiener models have been proposed to 

capture the input and output non-linearity of the previously identified linear models 

(Phurailatpam et al., 2021). 

Approaches based on modal analysis inherently require some more detailed modeling. Typically, 

system models are reduced to known, previously defined multi-area models or equivalent two-

generator models are within the estimation process. Model reduction has been based on 

coherency or the identification of transfer paths as in (J. H. Chow et al., 2008). The identification 

of equivalent two-generator systems might not always be feasible and could lead to significant 

errors. (Guo et al., 2014) assumes that modes have been previously identified and computes 

parameters with a least square method and by using a modal sensitivity matrix. The modal 

assurance criterion pairs the observed oscillatory modes with those in the original model. 

Several references focus on the identification of the modes and propose different methods 

therefor: adaptive local iterative filtering decomposition (ALIFD), subspace identification, 

estimation of signal parameters via rotational invariance techniques (ESPRIT), dynamic or 

empirical mode decomposition, etc.  
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Kalman filters (KF) have been widely applied for dynamic state estimation and parameter 

estimation. EKF and UKF extend the traditional KF to include non-linearities and to avoid errors 

due to the approximation of the nonlinearities affecting the propagation of the random variable, 

respectively. KF requires covariance matrixes of process and measurements noise, which are 

assumed to be constant and known in many cases (e.g., (Ariff et al., 2015)). Typically, KF-based 

approaches use classical generator models or reduced-order models to estimate, among others, 

inertia.  

Apart from model-based approaches, inertia estimation methods making use of ANN or 

exploiting stochastic processes have been proposed. ANN have been trained by using modal 

information or system responses in terms of frequency as input variables, aligned with the 

classification of the underlying phenomenon. Whereas area and system inertia could be 

predicted relatively well in (A. Schmitt & B. Lee, 2017), bus inertia prediction is far less accurate 

since relation between modal information and individual bus inertias is less clear. In (E. S. N. R. 

Paidi et al., 2020), a correlation analysis has shown that measurements of total active power 

generation from all synchronous generators, total active power produced by all non-

synchronous generators, and total dynamic induction motor power are the most suitable input 

variables for an  ANN estimating a system inertia. However, the measurement of the total 

induction motor power or even of all generators is not necessarily available. Changing and non-

contemplated scenarios affect accuracy of ANN in general.  

Training is also needed for the methods exploiting stochastic processes. (X. Cao et al., 2016) 

suggests using a Switching Markov Gaussian model (SMGM) to consider the complex stochastic 

interdependency of frequency and inertia, represented by Gaussian mixture models, and the 

temporal dependency, addressed through Markov chains. SGMG is trained using historical data, 

but a periodic online re-calibration based on dispatch information is needed to limit the 

accumulated inertia estimation. Dispatch information, i.e., breaker status and corresponding 

inertia constant, is also needed to train the inertia model proposed in (Allella et al., 2020), where 

inertia dynamics are the sum of periodic components and a weakly stationary stochastic process. 

As mentioned in section 5.2, some methods actively inject a probing signal, disturbing the 

system. Existing devices such as HVDC converters or AVR of generators can be used, but also 

new devices such as battery energy storage systems or ultracapacitors have been suggested for 

this purpose (Berry, 2019). Sine or multisine probing signals are used. (J. Zhang & H. Xu, 2017) 

identifies from the response to the probing signal transfer functions and applies frequency 

response fitting to finally extract the inertia. A frequency response function obtained by 

computing the Fourier coefficient of the power and the system frequency for each perturbation 

frequency is used in (S. Shah & V. Gevorgian, 2019). How the inertia is extracted from the peak 

is not fully clear since it requires the quantification of the equivalent inductance of the external 

grid for which inertia is estimated. 

5.5 Scope and distribution of inertia 
Inertia estimation methods have been classified into system-wide, area-wide and element-wise 

estimation methods. The estimation of the system-wide inertia provides valuable input with 

respect to its robustness in terms of frequency variations to active power unbalance. A single, 

system-wide is however not able to provide more insight into the distribution of the inertia 
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within the system. A first step in this direction is given by splitting the system into predefined 

areas, providing a rough estimation of the inertia distribution. The use of modal analysis 

inherently considers the distribution of inertia since oscillation frequency of modes not only 

depends on the inertia but also the electrical distance, i.e., the grid. 

The distribution of the inertia within the system has only recently attracted some attention. 

Most of the reviewed works determine a distribution indexes. Some indices measure generator 

speed differences or the differences of certain bus frequencies with respect to the frequency of 

the COI. The rate of change of inertia with respect to non-synchronous generation penetration 

has also been proposed as an index. An inertial index, assessing the sensitivity of the critical 

electromechanical model to active power injection, has been defined in (Brahma & Senroy, 

2021). The angle information of the inertial index of all the buses can be used to categorize all 

the buses into coherent bus groups. A large inertial index indicates that bus angles strongly vary 

with generator angles and speeds. These indices have in common that they show the relative 

distribution but not the absolute one. The application of these relative distribution indices to an 

estimated amount of inertia (e.g., system inertia) to derive the absolute distribution has not 

been shown so far. 

Two papers tackle the estimation and measurement of inertia distribution. One makes use of 

the non-uniformity of the electromechanical wave propagation speed during active power 

imbalances. The time of arrival at different PMUs approximates the propagation speed, being 

inversely proportional to the inertia. The second approach makes use of the frequency divider 

formula and estimates bus inertia from ambient data. Actually, individual generator transfer 

functions between the frequency of a given bus and the generators active power are identified 

by a subspace identification method and their joint excitation with a unitary step response 

allows estimating a given bus inertia. Care should be taken since bus inertias are not 

independent from each other, so neither this approach provides an absolute inertia distribution. 

5.6 Applicability to distribution systems 
Inertia estimation methods mainly focus on the bulk power system. It is however true that these 

methods have different scopes (system-wide, area-wide or element-wise) and that these 

methods could be potentially applied to the estimation of the inertia within a distribution 

system. Indeed, a distribution system could be, at least conceptually, considered as an area, for 

which inertia estimation methods have been developed.  

An important question is whether a single value of the inertia of the distribution system is sought 

or whether a deeper insight is needed, highlighting the distribution of the inertia within the 

distribution system. Equivalent dynamic models of active distribution networks (ADN) have been 

widely developed and discussed. However, such models only provide an equivalent inertia or 

equivalent inertia values disaggregated according to generation and demand, and their 

technology (e.g., an induction machine in parallel with a composite load and a converter-

connected generator. (J. V. Milanović & S. Mat Zali, 2013)). The same comment applies to those 

methods that make use of frequency and area-boundary power measurements to determine 

inertia (e.g., (Wilson et al., 2019) or (Tuttelberg et al., 2018)).  
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The application of inertia distribution methods to distribution systems could provide further 

insights. However, these methods provide relative distribution indexes or bus inertias, which are 

not independent from each other. In addition, PMU measurements at different locations would 

be needed. The deployment of PMU in distribution systems clearly lags the one in bulk power 

systems. A PMU at the point of common coupling of the distribution grid, measuring voltages 

and frequencies and active and reactive power flow could only determine the equivalent inertia 

of the distribution grid. A more detailed picture could be obtained by deploying further PMUs 

for instance nodes where the grid branches. Figure 4 illustrates this idea for a very simple case. 

The up-stream PMU could determine the equivalent inertia of the distribution grid, whereas the 

down-stream PMU determines the down-stream inertia. The inertia of the other branch without 

PMU could then be obtained by simple subtraction. Without being exhaustive, inertia estimation 

methods such as the ones proposed in (Tuttelberg et al., 2018), (Fan et al., 2013), (Wilson et al., 

2019), (Federico Milano & Alvaro Ortega Manjavacas, 2020a), etc. could be used to evaluate the 

inertia down-stream of a PMU. These methods estimate the equivalent inertia since they are 

based on the swing equation. Ideas of (Zografos et al., 2018) on including load-response, etc. 

could be also accounted for. Kalman filter as in (Ariff et al., 2015) or (Zhao et al., 2019) could 

also be used, but the underlying model will be, at most, an equivalent representation since exact 

number, type and connection status of downstream generation units are usually not known by 

DSO. 

 

Figure 4: Illustration of the location of PMUs at grid branching nodes. 

Approaches making use of modal analysis can provide additional insights into the distribution of 

the inertia. Indeed, the oscillation frequency of the modes depends on the inertia and its 

electrical distribution. Modal analysis requires the detection and identification of the modes. In 

case of distribution systems, there exist local modes as well as inter-area modes. One of the 

inter-area modes corresponds to the oscillations of the distribution system against the 

remaining system. Oscillation frequencies of local and inter-area modes are typically different. 

The inter-area mode of the distribution system against the remaining one could allow estimating 

the inertia of the distribution system (as well as the one of the system) using, for example, the 

method of (J. H. Chow et al., 2008). Approaches reported in (Guo et al., 2014) or (Panda et al., 

2020) could also be used as candidates. Note that if the n-1 independent electromechanical 

modes of a n-machine power system were measurable, only n-1 inertias could be estimated.  

Generation technology in distribution systems include both synchronous and non-synchronous 

generation, where the latter is increasing continuously. Since inertia estimation is a model 



A review of methods for the estimation of inertia and its distribution 
 

 

 

 

41  October 2021 

identification problem, all methods suppose an underlying model, ranging from a single swing 

equation based model to reduced-order multi-synchronous generator models. The performance 

of the methods and particularly of methods based on modal analysis and Kalman filtering 

depend on the appropriateness of the model. Indeed, the response of non-synchronous 

generation is very different to the response of synchronous generation. However, control 

approaches of non-synchronous, grid-forming generation making use of virtual synchronous 

machine implementations, droop controls, etc. emulate a behavior of synchronous machines. 

Apart from modeling assumption, knowledge of connection status and measurements are 

needed, the more the better as in the case of proposed Kalman filtering methods.  

Although stochastic estimation or methods based on ANN do not necessarily require very 

accurate dynamic models, they need on extensive training by using historical data or off-line 

simulations (A. Schmitt & B. Lee, 2017), (E. S. N. R. Paidi et al., 2020), (X. Cao et al., 2016). These 

methods or rather their data bases need to be periodically updated to catch operation 

conditions and structural changes not considered initially. Periodic online re-calibration could 

be needed to limit the accumulated inertia estimation. 

Given the limited amount of PMU measurements available in distribution systems and the 

complexity of certain approaches (e.g., modal-analysis-based or KF-based estimations), one 

could recommend inertia estimation methods based on the swing equation or approaches used 

to identify equivalent dynamic models of ADN to start with the implementation of inertia 

estimation methods in distribution systems. These approaches are relatively simple to 

implement and with certain degrees of maturity. The drawback is that with a single 

measurement location, only total inertia of the distribution system can be estimated. A more 

detailed picture could be obtained by deploying further PMUs for instance nodes where the grid 

branches (see Figure 4). 
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